AMPHIPOD DISTRIBUTION IN THE SOFT-BOTTOM SUBTIDAL ZONES OF JAVA ISLAND IN RELATION TO SEDIMENT TYPES

  • Tri Arfianti Marine Zoology Laboratory, LIPI, Jakarta, 14430, Indonesia
  • Hendra F. Sihaloho Marine Molecular Genetics Laboratory, LIPI, Jakarta, 14430, Indonesia
  • Triyoni Purbonegoro Marine Toxicology Laboratory, LIPI, Jakarta, 14430, Indonesia
  • - Suratno Marine Toxicology Laboratory, LIPI, Jakarta, 14430, Indonesia
  • Zainal Arifin Marine Toxicology Laboratory, LIPI, Jakarta, 14430, Indonesia

Abstract

Amphipods inhabit many marine benthic habitats and have an important ecological role. However, there is a lack of information about Indonesian amphipod diversity and distribution, especially in the shallow subtidal sediments of Probolinggo and Tangerang. During the transition to the monsoon season in September 2014, eight subtidal stations were sampled in Bayeman (Probolinggo) on East Java and seven subtidal stations were sampled in Kramat Kebo (Tangerang) in West Java. A total of 7346 amphipods individuals were collected, comprising five genera. Genus Photis was the most abundant group, followed by Grandidierella and Synchelidium. Multivariate analyses of these data indicated that sampling location and sediment granulometry were major determinants of distribution and composition of amphipods in Probolinggo and Tangerang.

Downloads

Download data is not yet available.

References

Barnard, J. L. 1962. Benthic marine amphipoda of southern california: families aoridae, photidae, ischyroceridae, corophiidae, podoceridae. Pacif. Nat., 3,1-72.

Barnard, J. L. & Karaman, G. S. (1991). The families and genera of marine gammaridean amphipoda (except marine gammaroidea) part 2 (pp. 419-866). Australia : Records of The Australian Museum.

Beare, D. J. & Moore, P.G. (1996). The distribution, growth and reproduction of Pontocrates arenariusand P. altamarinus (Crustacea: Amphipoda) at Millport, Scotland. J. Mar. Biol. Assoc. UK., 76, 931–950. doi:10.1017/S0025315400040893

Bellan-Santini, D.; Karaman, G.; Ledoyer, M.; Myers, A.; Ruffo, S.; Vader, W. (1998). The Amphipoda of the Mediterranean. Part 4: Localities and Map, Addenda to Parts 1-3, Key to Families, Ecology, Faunistics and Zoogeography, Bibliography, Index. Mém. Inst. Océangr. Monaco., 13 (4), 815–950.

Bloom, S. A. (1981). Similarity Indices in Community Studies: Potential Pitfalls. Mar. Ecol. Prog. Ser., 5, 125-128. doi:10.3354/meps005125

Carvalho, S., Gaspar, M.B., Moura, A., Vale, C., Antunes, P., Gil, O., Cancela da Fonseca L, Falcão M. (2006). The use of the marine biotic index AMBI in the assessment of the ecological status of the Óbidos lagoon (Portugal). Mar. Pollut. Bull., 52, 1414–1424. doi:10.1016/j.marpolbul.2006.04.004

Carvalho, S., Cunha, M.R., Pereira, F., Pousão-Ferreira, P., Santos, M.N., Gaspar, M.B., 2012. The effect of depth and sediment type on the spatial distribution of shallow soft-bottom amphipods along the southern Portuguese coast. Helgol. Mar. Res., 66, 489–501. doi:10.1007/s10152-011-0285-9

Clarke, K. R. & Warwick, R. M. (2001). Change in marine communities: an approach to statistical analysis and interpretation. Plymouth, United Kingdom, PRIMER-E Ltd.

Connell, J. H. (1978). Diversity in tropical rainforests and coral reefs. Science., 199, 1302-1310.

De Grave, S. (1999). The infuence of sedimentary heterogeneity on within maerl bed differences in infaunal crustacean community. Estuar. Coast. Shelf. Sci., 49, 153–163. doi:10.1006/ecss.1999.0484

Duffy, J. E. & Hay, M. E. (2000). Strong impacts of grazing amphipods on the organization of a benthic community. Ecol. Monogr., 70, 237–263. doi:10.1890/0012-9615(2000)070[0237:SIOGAO]2.0.CO;2

Etter, R. J. & Grassle, J. F. (1992). Patterns of species diversity in the deep sea as a function of sediment particle size diversity. Nature., 360, 576-578. doi:10.1038/360576a0

Field, J. G., Clarke, K. R. , Warwick, R. M. (1982). A practical strategy for analysing multispecies distribution patterns. Mar. Ecol. Prog. Ser., 8, 37–52.

Grange, K. R. (1977). Littoral benthos-sediment relationships in manukau harbour, New Zealand. N. Z. J. Mar. Fresh. Res., 11(1), 111-23.

Gray, J. S. (1968). The ecology of marine sediments. Cambridge: University Press, 180 pp.

Hall-Spencer, J., White, N., Gillespie, E., Gillham, K., Foggo, A. (2006). Impact of fish farms on maerl beds in strongly tidal areas. Mar. Ecol. Prog. Ser., 326,1–9.

Lowry, J. K. (2013). Amphipoda. In: Lowry, J. K. (ed.), World amphipoda database. Accessed through: World Register of Marine Species (WoRMS) at http://www.marinespecies.org/aphia.php?p=taxdetails&id=1135.

Marques, J. C. (2008). Coastal and estuarine environments. Encyclopedia of Ecology. S. E. J. Fath and D. Brian (pp. 619-630). Amsterdam :Elsevier B.V.

Marques, J. C, Bellan-Santini, D. (1990). Benthic amphipod fauna (Crustacea) of the Portuguese coast: biogeographical considerations. Mar. Nat., 3, 43–51.

McKinney, L. D. (1980). The genus photis (crustacea: amphipoda) from the texas coast with the description of a new species, Photis melanicus. Contrib. Mar. Sci., 23, 57-61.

Myers, A. A. & Lowry, J. K. (2003). A phylogeny and a new classification of the Corophiidea Leach,1814 (Amphipoda). J. Crust. Biol., 23(2), 443–485.

Nicholls, R. J, Birkemeier, W.A., Lee, G. (1998). Evaluation of depth of closure using data from Duck, NC, USA. Mar. Geol., 148, 179–201.

Nordhaus, I., Hadipudjana, F. A., Janssen, R., Pamungkas, J. 2009. Spatio-temporal variation of macrobenthic communities in the mangrove-fringed Segara Anakan lagoon, Indonesia, affected by anthropogenic activities. Reg Environ Change., 9, 291–313.

Ortiz, M & Lalana, R. (1997). Amphipoda, In: M. GUTU (Co-ordination), Results of the zoological expedition organized by "Grigore Antipa" museum in the indonesian archipelago (1991). I. peracarida (crustacea). Trav. Mus. Natl. Hist. Nat., 38, 29-113.

Prato, E. & Biandiolino, F. (2005). Amphipod biodiversity of shallow water in the Taranto seas (north-western Ionian Sea). J. Mar. Biol. Assoc. UK., 85, 333–338.

Rodil, I. F., Lastra, M., Sánchez-Mata, A. G. (2006). Community structure and intertidal zonation of the macroinfauna in intermediate sandy beaches in temperate latitudes: north coast of Spain. Estuar. Coast. Shelf. Sci., 67, 267–279.

Rodríguez-Graña, L., Calliari, D., Conde, D., Sellanes, J., Urrutia, R. (2008). Food web of a SW Atlantic shallow coastal lagoon: spatial environmental variability does not impose substantial changes in the trophic structure. Mar. Ecol. Prog. Ser., 362, 69–83. DOI:10.3354/meps07401

Sanders, M. L. (1968). Marine benthic diversity: a comparative study. Am. Nat., 102, 243–282.

Snelgrove, P. V. R. (1998). The biodiversity of macrofaunal organisms in marine sediments. Biodivers. Conserv., 7, 1123–1132.

Snelgrove, P. V. R. & Butman, C.A. (1994). Animal sediment relationships revisited: Cause versus effect. Oceanogr. Mar. Biol. Ann. Rev., 32, 111-177.

Sousa, R., Dias, S., Freitas, V., Antunes, C. (2007). Subtidal macrozoobenthic ssemblages along the River Minho estuarine gradient (northwest Iberian Península). Aquat. Conserv. Mar. Freshw. Ecosyst., 18, 1063–1077. doi:10.1002/aqc.871

Souza-Filho, J. F. & Serejo, C. S.(2010). Two new species of the family Photidae (Amphipoda: Corophiidea: Photoidea) from Brazilian waters, with description of Rocasphotisgen. nov.', J. Nat. Hist., 44 (9), 559-577. doi:10.1080/00222930903471118

Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. J. Geol., 30 (5), 377-392.

Ysebaert , T., Meire, P., Herman, P. M. J., Verbeek, H. (2002). Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression. Mar. Ecol. Prog. Ser., 225, 79–95.

Published
2015-12-31
How to Cite
Arfianti, T., Sihaloho, H., Purbonegoro, T., Suratno, -, & Arifin, Z. (2015). AMPHIPOD DISTRIBUTION IN THE SOFT-BOTTOM SUBTIDAL ZONES OF JAVA ISLAND IN RELATION TO SEDIMENT TYPES. Marine Research in Indonesia, 40(1), 23-31. https://doi.org/10.14203/mri.v40i1.68
Section
Articles