- Hadiyanto


Environmental degradation has more significant impacts on rocky intertidal communities after global changes increase progressively. Thus, ecological monitoring should be conducted properly to analyse potential drivers and their impacts. However, most of the ecological monitoring in rocky intertidal shores is more interested in macroalgae. Polychaetes associated with macrophyte assemblages should be also involved in the monitoring because they are important in determining coastal health and productivity. A successful ecological monitoring should consider three factors: taxonomic level, statistical power, and sample size. In this study, those factors were analysed in the relationships between polychaetes and macrophytes. Four taxonomic levels of polychaetes (i.e. order, family, genus, species) were tested based on 25 samples collected from rocky intertidal shores of Gunung Kidul, Yogyakarta, Indonesia. Relationships between each of taxonomic richness of polychaetes and each of macrophytes variables (i.e. species richness, biomass, species composition) were analysed using a Generalised Linear Models fitted by Poisson Distribution and log link. The statistical power of those relationships and the sample size needed to obtain a strong statistical power (>0.8) were also recorded. Relationships between each of taxonomic composition of polychaetes and each of macrophyte variables were analysed using a distance-based Redundancy Analysis based on Bray-Curtis dissimilarity on log(x+1) transformed abundance data with 999 permutations. Results showed that family-based data analysis was sufficient to detect significant relationships between polychaetes and macrophytes. However, the statistical power of most relationships was relatively weak (<0.8). Hence, the family-based data analysis should select a 44-sample size to gain significant relationships with a strong statistical power. 


family-based data analysis, significant changes, polychaete communities, macrophyte assemblages, rocky intertidal shores

Full Text:



Abbiati, M., Bianchi, C. N., & Castelli, A. (1987). Polychaete vertical zonation along a littoral cliff in the Western Méditerranean. Marine Ecology, 8(1), 33-48. doi:10.1111/j.1439-0485.1987.tb00173.x

Bakus, G. (2007). Quantitative Analysis of Marine Biological Communities: Field Biology and Environment. New Jersey: John Wiley & Sons, Inc., 435pp.

Bates, C. R., Scott, G., Tobin, M., & Thompson, R. (2007). Weighing the costs and benefits of reduced sampling resolution in biomonitoring studies: Perspectives from the temperate rocky intertidal. Biological Conservation, 137(4), 617-625. doi:

Bellgrove, A., Clayton, M. N., & Quinn, G. P. (2004). An integrated study of the temporal and spatial variation in the supply of propagules, recruitment and assemblages of intertidal macroalgae on a wave-exposed rocky coast, Victoria, Australia. Journal of Experimental Marine Biology and Ecology, 310(2), 207-225. doi:

Bertocci, I., Araújo, R., Vaselli, S., & Sousa-Pinto, I. (2011). Marginal populations under pressure: spatial and temporal heterogeneity of Ascophyllum nodosum and associated assemblages affected by human trampling in Portugal. Marine Ecology Progress Series, 439, 73-82.

Best, R. J., Chaudoin, A. L., Bracken, M. E. S., Graham, M. H., & Stachowicz, J. J. (2014). Plant–animal diversity relationships in a rocky intertidal system depend on invertebrate body size and algal cover. Ecology, 95(5), 1308-1322. doi:10.1890/13-1480.1

Casu, D., Ceccherelli, G., Curini-Galletti, M., & Castelli, A. (2006). Short-term effects of experimental trampling on polychaetes of a rocky intertidal substratum (Asinara Island MPA, NW Mediterranean). Scientia Marina, 70S3, 179-186.

Caughlan, L., & Oakley, K. L. (2001). Cost considerations for long-term ecological monitoring. Ecological Indicators, 1(2), 123-134. doi:

Charles, H. P., Lyman, L. M., Roger, H. G., & Wallace, P. E. (2001). Sampling design begets conclusions: the statistical basis for detection of injury to and recovery of shoreline communities after the Exxon Valdez¹ oil spill. Marine Ecology Progress Series, 210, 255-283.

Cohen, J. (1977). Statistical Power Analysis for the Behavioral Sciences. Revised edition. New York: Academic Press, 474pp.

Crawley, M. (2015). Statistics: An introduction using R (2nd ed.). Chichester: John Wiley & Sons, Ltd.

Damayanti, A., & Ayuningtyas, R. (2008). Karakteristik fisik dan pemanfaatan pantai karst Kabupaten Gunungkidul. Makara Teknologi, 12(2), 91-98.

Defeo, O., & Lercari, D. (2004). Testing taxonomic resolution levels for ecological monitoring in sandy beach macrobenthic communities. Aquatic Conservation: Marine and Freshwater Ecosystems, 14(1), 65-74. doi:10.1002/aqc.594

Duggins, D. O., Gómez-Buckley, M. C., Buckley, R. M., Lowe, A. T., Galloway, A. W. E., & Dethier, M. N. (2016). Islands in the stream: kelp detritus as faunal magnets. Marine Biology, 163(1), 17. doi:10.1007/s00227-015-2781-y

Ellis, D. (2003). Rocky shore intertidal zonation as a means of monitoring and assessing shoreline biodiversity recovery. Marine Pollution Bulletin, 46, 305-307.

Elzinga, C., Salzer, D., Willoughby, J., & Gibbs, J. (2001). Monitoring Plant and Animal Populations. Massachusetts: Wiley-Blackwell, 360pp.

Franco, A., Quintino, V., & Elliott, M. (2015). Benthic monitoring and sampling design and effort to detect spatial changes: A case study using data from offshore wind farm sites. Ecological Indicators, 57, 298-304. doi:

Gambi, M. C., Zupo, V., Buia, M. C., & Mazzella, L. (2000). Feeding ecology of Platynereis dumerilii (Audouin & Milne-Edwards) in the seagrass Posidonia oceanica system: The role of the epiphytic flora (Polychaeta, nereididae). Ophelia, 53(3), 189-202. doi:10.1080/00785326.2000.10409449

Giangrande, A. (1988). Polychaete zonation and its relation to algal distribution down a vertical cliff in the western Mediterranean (Italy): a structural analysis. Journal of Experimental Marine Biology and Ecology, 120(3), 263-276. doi:

Giangrande, A., Delos, A. L., Fraschetti, S., Musco, L., Licciano, M., & Terlizzi, A. (2003). Polychaete assemblages along a rocky shore on the South Adriatic coast (Mediterranean Sea): patterns of spatial distribution. Marine Biology, 143(6), 1109-1116. doi:10.1007/s00227-003-1162-0

Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53(3/4), 325-338. doi:10.2307/2333639

Gusmao-Junior, J. B. L., & Lana, P. C. (2015). Spatial variability of the infauna adjacent to intertidal rocky shores in a subtropical estuary. Hydrobiologia, 743(1), 53-64. doi:10.1007/s10750-014-2004-4

Harjiyatni, F. (2001). Peran serta masyarakat dalam pelestarian terumbu karang di pesisir pantai Kabupaten Gunung Kidul. Manusia dan Lingkungan, VIII(1), 49-60.

Hewitt, J. E., Anderson, M. J., & Thrush, S. F. (2005). Assessing and monitoring ecological community health in marine systems. Ecological Applications, 15(3), 942-953.

Jati, A. (1996). Biozonasi Echinodermata di Pantai Drini, Gunung Kidul Yogyakarta. Biota, 1(2), 13-21.

Jimenez, H., Dumas, P., Bigot, L., Amouroux, J. M., & Ferraris, J. (2010). Taxonomic resolution needed to describe invertebrate assemblages and to detect harvesting effects on coral reef ecosystems. Marine Ecology Progress Series, 406, 211-222.

Jones, M. C., & Cheung, W. W. L. (2015). Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES Journal of Marine Science, 72(3), 741-752. doi:10.1093/icesjms/fsu172

Jueterbock, A., Tyberghein, L., Verbruggen, H., Coyer, J., Olsen, J. L., & Hoarau, G. (2013). Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecology and Evolution, 1-18.

Kallimanis, A. S., Mazaris, A. D., Tsakanikas, D., Dimopoulos, P., Pantis, J. D., & Sgardelis, S. P. (2012). Efficient biodiversity monitoring: Which taxonomic level to study? Ecological Indicators, 15(1), 100-104. doi:

Legendre, P., & Anderson, M. J. (1999). Distance-based Redundancy Analysis: Testing multispecies responses in multifactorial ecological experiments. Ecological Monographs, 69(1), 1-24. doi:10.2307/2657192

Magalhaes, W., & Bailey-Brock, J. H. (2014). Polychaete assemblages associated with the invasive green alga Avrainvillaea amadelpha and surrounding bare sediment patches in Hawaii. Memoirs of Museum Victoria, 71, 161-168.

Marcías, M. L., Deregibus, D., Saravia, L. A., Campana, G. L., & Quartino, M. L. (2017). Life between tides: Spatial and temporal variations of an intertidal macroalgal community at Potter Peninsula, South Shetland Islands, Antarctica. Estuarine, Coastal and Shelf Science, 187, 193-203. doi:

Martín, A., Miloslavich, P., Díaz, Y., Ortega, I., Klein, E., Troncoso, J., Aldea, C., & Carbonini, A. K. (2016). Intertidal benthic communities associated with the macroalgae Iridaea cordata and Adenocystis utricularis in King George Island, Antarctica. Polar Biology, 39(2), 207-220. doi:10.1007/s00300-015-1773-1

Martnez–Abran, A. (2014). Is the 'n = 30 rule of thumb' of ecological field studies reliable? A call for greater attention to the variability in our data. Animal Biodiversity and Conservation, 37.1, 95-100.

Masi, B. P., Macedo, I. M., & Zalmon, I. R. (2009). Annual and spatial variation of intertidal benthic community zonation in a breakwater off the Rio de Janeiro coast, south-eastern Brazil. Journal of the Marine Biological Association of the United Kingdom, 89(2), 225-234. doi:10.1017/S0025315408003032

Mayakun, J., Kim, J. H., & Prathep, A. (2010). Effects of herbivory and the season of disturbance on algal succession in a tropical intertidal shore, Phuket, Thailand. Phycological Research, 58(2), 88-96. doi:10.1111/j.1440-1835.2010.00566.x

Medina, M., Andrade, S., Faugeron, S., Lagos, N., Mella, D., & Correa, J. A. (2005). Biodiversity of rocky intertidal benthic communities associated with copper mine tailing discharges in northern Chile. Marine Pollution Bulletin, 50(4), 396-409. doi:

Miftahussalam, Sukandarrumidi, & Hendrayana, H. (2004). Laguna buatan untuk wisata pantai ditinjau dari aspek geologi (Studi kasus: Pantai Krakal, Kecamatan Tanjungsari, Kabupaten Gunung Kidul, Yogyakarta). Teknosains, 17(1-11).

Morais, G. C., & Lee, J. T. (2014). Intertidal benthic macrofauna of rare rocky fragments in the Amazon region. 2014, 62(1), 18. doi:10.15517/rbt.v62i1.8425

Morrison, L. W. (2007). Assessing the reliability of ecological monitoring data: power analysis and alternative approaches. Natural Areas Journal, 27(1), 83-91. doi:10.3375/0885-8608(2007)27[83:ATROEM]2.0.CO;2

Mueller, M., Pander, J., & Geist, J. (2014). A new tool for assessment and monitoring of community and ecosystem change based on multivariate abundance data integration from different taxonomic groups. Environmental Systems Research, 3(1), 12. doi:10.1186/2193-2697-3-12

Murray, S. N., Wiesberg, S., Raimondi, P. T., Ambrose, R., Bell, C., Blanchette, C. A., Burnaford, J. L., Dethier, M. N., Engle, J. M., Foster, M. S., Miner, C. M., Nielsen, K. J., Pearse, J. S., Richard, D. V., & Smith, J. (2016). Evaluating ecological states of rocky intertidal communities: A Best Professional Judgment exercise. Ecological Indicators, 60, 802-814.

Musco, L., Terlizzi, A., Licciano, M., & Giangrande, A. (2009). Taxonomic structure and the effectiveness of surrogates in environmental monitoring: a lesson from polychaetes. Marine Ecology Progress Series, 383, 199-210.

Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2016). vegan: Community Ecology Package. R package version 2.3-5.

Olsgard, F., Somerfield, P. J., & Carr, M. R. (1997). Relationships between taxonomic resolution and data transformations in analyses of a macrobenthic community along an established pollution gradient. Marine Ecology Progress Series, 149, 173-181.

Pabis, K., & Sicinski, J. (2010). Polychaete fauna associated with holdfasts of the large brown alga Himantothallus grandifolius in Admiralty Bay, King George Island, Antarctic. Polar Biology, 33(9), 1277-1288. doi:10.1007/s00300-010-0816-x

Qiu, W. (2015). powerMediation: Power/sample size calculation. R package version 0.2.4.

Signorini, D. F. (1991). Sample size for Poisson regression. Biometrika, 78(2), 446-450. doi:10.2307/2337274

Steneck, R. S., & Dethier, M. N. (1994). A functional group approach to the structure of algal-dominated communities. Oikos, 69(3), 476-498. doi:10.2307/3545860

Thompson, B. W., Riddle, M. J., & Stark, J. S. (2003). Cost-efficient methods for marine pollution monitoring at Casey Station, East Antarctica: the choice of sieve mesh-size and taxonomic resolution. Marine Pollution Bulletin, 46(2), 232-243. doi:

Thompson, R. C., Crowe, T. P., & Hawkins, S. J. (2002). Rocky intertidal communities: past environmental changes, present status and predictions for the next 25 years. Environmental Conservation, 29(2), 168-191. doi:10.1017/S0376892902000115

Torres, A. C., Veiga, P., Rubal, M., & Sousa-Pinto, I. (2015). The role of annual macroalgal morphology in driving its epifaunal assemblages. Journal of Experimental Marine Biology and Ecology, 464, 96-106. doi:

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag, 212pp.

Zamzow, J. P., Amsler, C. D., McClintock, J. B., & Baker, B. J. (2010). Habitat choice and predator avoidance by Antarctic amphipods: the roles of algal chemistry and morphology. Marine Ecology Progress Series, 400, 155-163.



  • There are currently no refbacks.

Copyright © 2017 Marine Research in Indonesia


 Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© Research Center for Oceanography - Indonesian Institute of Sciences (LIPI)